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We discuss how multichannel Kondo physics can arise in the setting of a localized level coupled to several
bosonic Tomonaga-Luttinger liquid leads. We propose one physical realization involving ultracold bosonic
atoms coupled to an atomic quantum dot, and a second, based on superconducting nanowires coupled to a
Cooper-pair box. The corresponding zero-temperature phase diagram is determined via an interplay between
Kondo-type phenomena arising from the dot and the consequences of direct interlead hopping, which can
destabilize the Kondo ground state, thus suppressing the Kondo effect. We demonstrate that the multichannel
Kondo state is stable over a wide range of parameters. We establish the existence of two nontrivial phase
transitions, involving a competition between Kondo screening at the dot and strong correlations either within
or between the leads (which, respectively, promote local number and phase pinning). These transitions coalesce

at a self-dual multicritical point.
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I. INTRODUCTION

Magnetic impurities can drastically alter the low-
temperature properties of metals, leading to anomalous tem-
perature dependence in, e.g., the heat capacity, resistance,
and magnetoresistance. These properties, collectively known
as the Kondo effect,' are exhibited when the impurity inter-
acts antiferromagnetically with the conduction electrons of
the metal and are due to the dynamic screening, as 7— 0, of
the spins of the individual impurities by a cloud of conduc-
tion electrons. The low-energy scattering properties of each
screened impurity are those of a bound but spin-polarizable
impurity-cloud singlet, whose effects on the electron gas can
be described using Fermi-liquid theory.? For a ferromagnetic
impurity-cloud interaction, on the other hand, the spins of the
impurity and its polarization cloud align; thus the system
possesses two degenerate triplet ground states. A quantum
phase transition separates the ferromagnetic and antiferro-
magnetic (i.e., Kondo) cases.

A striking extension of this “one-channel” Kondo effect is
the multichannel version®* in which each impurity couples
separately to conduction electrons that propagate in N(>1)
channels (e.g., distinguished by orbital angular momentum).
When N>2s (with s being the spin of the impurity), the
conduction electrons overscreen the impurity, and the low-
energy behavior can no longer be described by Fermi-liquid
theory; instead, the thermodynamic properties follow anoma-
lous power laws governed by a quantum critical point.®> In
metallic systems, observing the N-channel Kondo effect has
proven demanding.® Although advances in nanoscience have
enabled the exploration of Kondo physics in the more con-
trolled setting of semiconductor-based quantum dots’ con-
nected to leads (which realize the channels), even here the
engineering of multichannel Kondo phenomena remains a
challenge. This is primarily because of the difficulty of pre-
venting interchannel hybridization, which gives rise at low
energies to a single composite channel that screens the im-
purity via the one-channel Kondo effect. For instance, signa-
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tures of the two-channel Kondo effect have recently been
observed in a quantum-dot-based setting® but accomplishing
this required fine tuning to prevent hybridization.

In view of these challenges, it is desirable to explore
schemes for accessing the N-channel Kondo effect and its
onset in a more readily controllable setting: such settings can
be achieved, e.g., using leads having tunable interparticle
correlations. For the one-channel Kondo effect the possibility
of such control was demonstrated in Ref. 9 in the context of
a quantum-dot coupled to a Tomonaga-Luttinger liquid
(TLL) lead.'® The strength of the repulsive interactions in the
lead (as encoded in the TLL parameter K) was found to tune
the position of the Kondo-to-ferromagnetic phase transition.
Motivated in part by this result, in the present paper we
explore the case of N TLL leads coupled to a quantum dot;
this case is expected to exhibit rich physics arising from the
possibility of not only intralead but also interlead correla-
tions. We focus on the case of bosonic leads because for
them a wide range of K values can be experimentally ac-
cessed with relative ease: e.g., ultracold bosons with short-
range repulsive interactions have K>1,"" whereas ones with
dipolar interactions have K <1.> We suggest two concrete
realization schemes: one uses ultracold atoms;'3'* the other
uses superconducting nanowires and a Cooper-pair box.!?
Systems of ultracold atoms are especially well suited to the
study of multichannel Kondo physics because their interac-
tions are highly controllable and tunable,'' and extraneous
noise can be mitigated.

Our main theoretical results concern the competition be-
tween the N-channel Kondo effect and interactions in the
leads; these interactions either suppress lead-dot tunneling or
generate interlead phase locking (which would have the ef-
fect of short-circuiting the dot). Our analysis yields a phase
diagram containing four distinct phases (see Fig. 4, below)
and exhibiting a pair of unusual phase boundaries, which
meet at a self-dual multicritical point. As discussed below, an
important advantage of our proposed experimental realiza-
tion of the N-channel Kondo effect is that it is robust against
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interlead hybridization. We discuss the conditions for observ-
ing the N-channel Kondo effect using ultracold atoms and
suggest that the unusual phase boundaries may be accessed
experimentally using dipolar bosons.

II. KONDO AND RESONANT-LEVEL MODELS

We consider the general anisotropic Kondo Hamiltonian
Hy=Heqqs+Hin,  Where Hyooq==lk|ch i describes a
free-electron gas (or a Fermi liquid) having Fermi velocity
Up, Cr annihilates a conduction electron of momentum & and
spin o, and H;,, describes the coupling to the impurity spin,
which is located at r=0,

J J.
H,, = ?l[s+cj(0)q(0) +He]+ Z"SZE oc!(0)c,(0),

where ¢,(0) annihilates a conduction electron of spin ¢ at the
impurity location, the Pauli matrices S act on the impurity
spin state, and J, and J |, respectively, the amplitudes for the
lead-dot Ising and spin-flip processes. The antiferromagnetic
case, J,>0, leads to Kondo screening; at low temperatures,
Kondo screening also occurs for J,<0 and |/, |>|J,|. How-
ever, for J,<0 and |/ | <|J,|, the impurity spin freezes out at
low temperatures.

We shall primarily be concerned with a model that is
equivalent to the Kondo model, viz., the interacting
resonance-level model (iRLM). This model consists of a lo-
calized level d (i.e., a quantum dot) at the Fermi energy,
hybridized with N channels of spinless noninteracting con-
duction electrons ¢y, together with a short-ranged repulsion
between dot and lead electrons: Higyy=Hieads + Honsite T Hint-
Here, the leads are described by Hyeyq= 2 Sn; €(k)c)y e [in
which e(k) is the energy of a conduction electron of quasi-
momentum k], the on-dot potential by H,.=Bd'd, and the
dot-lead couplings by

Hiy = V[d'e,(0) + He ]+ U<de— %) {CI,(O)C,,(O) - ﬂ ;

(1)

where V~J, and U~ J_+const. The canonical transforma-
tion that maps the Kondo model on to the iRLM consists of
identifying the spin-density waves of the Kondo model with
the particle-density waves of the iRLM. The analogy is most
evident as U— : the presence of an electron on the dot
ensures the absence of electrons near the dot, and vice versa,
i.e., an anticorrelated state resembling the Kondo singlet. The
Kondo effect manifests itself in the iRLM via an enhance-
ment, as 7T— 0, of number fluctuations on the dot.

We now turn to the case of the iRLM with leads consist-
ing of interacting electrons in one dimension, i.e., TLL leads.
In this case the leads are governed by the Hamiltonian
Hyeaas==(E(k)b;b in which {b,} are bosonic fields that de-
scribe free collective phonon modes with linear dispersion'”
E(k)~ |k|. (Hy, is the same as in the noninteracting case
discussed above.) As discussed in Ref. 9, this version of the
iRLM can also be mapped on to the standard Kondo model,
but the boundary between the ferromagnetic and antiferro-
magnetic phases depends on K, occurring at U :ﬁvs(\e’m
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—1), in which v is the speed of sound in the leads.

In the N-channel generalization of the iRLM, each chan-
nel couples independently to the impurity via Hj,. By invert-
ing the iRLM-to-Kondo mapping, one arrives at the
N-channel Kondo Hamiltonian studied in Refs. 3 and 5, in
which each of N channels couples independently to the spin.
However, the interchannel particle transfer terms (i.e., hy-

bridization)
H ~ ¢l (00 50,0 5(0)S, )

which destabilize the N-channel Kondo effect, do not arise in
the iRLM. This is because the particle-number (or “charge”)
sector of the leads in the iRLM maps on to the spin sector of
the equivalent Kondo model. In contrast, the particle sector
of the leads in the equivalent Kondo model has no physical
significance in the iRLM and, accordingly, cannot couple to
the dot. As the present work is concerned with physical re-
alizations of the iRLM, we shall not consider terms of the
form Hy (which are unphysical in the iRLM) further.

III. REALIZATIONS OF THE IRLM
A. Experimental setup

The first realization that we discuss involves ultracold at-
oms and extends the ideas of Ref. 14. A star-shaped pattern
of N one-dimensional leads meeting at a point (see Fig. 1)
can be constructed by passing a laser beam through a phase
mask or spatial light modulator (SLM).'® Such a device is a
sheet of glass of spatially varying thickness, which distorts
flat wave fronts, giving rise to a prescribed intensity pattern
at a “screen” some fixed distance away. Algorithms for the
construction of appropriate phase patterns are discussed in
Refs. 16 and 17.

As for the dot itself, it can be realized as follows.!* Sup-
pose that the atoms discussed in the preceding paragraph are
in a hyperfine state a. A tightly confining trap for a different
hyperfine state b is now created at the intersection of the
leads. An atom in state a can make a Raman transition to
state b, and vice versa; while in b, it is confined at the “dot.”
The Raman transition thus creates a lead-dot hopping ampli-
tude. This setup realizes an iRLM having the following cou-
plings: K is determined by the scattering length g,, for
atomic state a, U by the a < b scattering length g, and V by
the amplitude (i.e., effective Rabi frequency) of the Raman
transition. Double occupancy of the dot is prevented by a
large repulsive interaction g,, between atoms on the dot
(provided that g,,> g,.,&.5)- All interactions are tunable via
Feshbach resonances. The direct interlead hopping amplitude
is governed by the intensity of the laser that traps a-state
atoms at the intersection of the leads.

One can realize a similar model in a mesoscopic setting
by using superconducting nanowires as the leads, together
with a Cooper-pair box'*>—i.e., a superconducting island that
holds at most one Cooper pair—as the dot. The normal
modes of the leads are plasmon excitations, and the Hamil-
tonian for the box-lead system has the same form as that for
the ultracold-atom system, provided the leads are connected
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FIG. 1. (Color online) Candidate ultracold-atom setup. The spa-
tial light modulator (SLM) distorts the wave fronts of laser A so as
to create a star-shaped pattern at the “screen.” Atoms are confined
to the screen using two lasers (b) propagating at a relative angle
0<m so as to create an optical lattice of spacing L
=N/[2 sin(6/2)]. Lasers C and D are used to confine atoms in hy-
perfine state b at the “dot” (dark central region).

to the dot via Josephson couplings (which determine V). The
coupling U is determined by the lead-dot Coulomb repulsion.

B. Interlead hopping

The geometries considered in this work, involving leads
that are realized by one-dimensional tubes or wires, entail
the possibility of direct interlead atomic (or electronic) hop-
ping. One must therefore account for effects due to terms of
the form Hyyy, ~7,,r¢1(0)c,(0), which describe processes in
which an electron hops from lead n to lead n’. We shall
assume that the amplitudes 7,,,, are equal for all n, n': i.e.,
that each of the leads is connected with equal amplitude to
all the others [see Fig. 1(c)]. In other words, we shall assume
that the network of wires has the connectivity of a com-
pletely connected graph with equal hopping amplitude on
each of the links. For four or five wires, such a situation can
be arranged directly, by fine tuning the shape of the central
barrier. A more general arrangement, which would work for
an arbitrarily large number of wires, is to have a potential
well for a atoms at the center of the trap that is higher in
energy than all the parameters in the resonant-level model
[see Fig. 1(a)]. (Note that this central island is nor the quan-
tum dot, which is created by the potential for b atoms.) Such
a site would not appear in the effective low-energy descrip-
tion; instead, upon being integrated out, it would generate
interlead hopping terms that would have the same value for
any pair of leads. These terms could be tuned by changing
the depth of the optical potential for a atoms at the center of
the star shape in Fig. 2. It is important to note that we are
assuming that the energy cost A for the occupation of the
central island exceeds all other energy scales in the problem.
Therefore, the lifetime of atoms on the island is approxi-
mately 7/ A; because this is smaller than any other time scale
in the problem, the island-mediated interlead tunneling pro-
cess may be treated as being instantaneous.

Relaxing the assumption of large A would lead to the
appearance of Coulomb-blockade physics associated with
the on-site cost for having multiple particles on the central
island. Furthermore, the degree of freedom related to the
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A

FIG. 2. (a) Schematic representation of the optical potential ex-
perienced by a-type atoms. The dotted gray line marks the chemical
potential. Interlead tunneling is mediated by the central island, the
occupation of which costs an energy A. For A larger than the other
relevant energy scales, the central island can be integrated out to
yield an instantaneous interlead hopping element. (b) The two-
dimensional geometry in the plane to which the atoms are confined,
including the central island. The shading indicates the local depth of
the optical potential; darker gray implies a deeper potential. The
dashed line indicates the longitudinal section sketched in panel (a).
(c) Effective connectivity, at low energies, of the four wires: each
wire is coupled to every other wire with equal strength, as explained
in the text.

occupation of the central island would couple directly to the
resonant level for the b-type atoms (i.e., to the dot); such a
coupling might generate an operator that leads away from the
multichannel Kondo fixed point and toward the single-
channel Kondo fixed point. We shall avoid such complica-
tions in the present work by restricting ourselves to large
values of A.

C. Accessible parameter range

For the cold-atomic case, the coupling constant U is given

by the approximate expression'*'3
h%a,
U=—%(npap) X f, (3)
2may,

where a,, is the (three-dimensional) scattering length be-
tween species a and b, m is the atomic mass, a; is the width
of the harmonic-oscillator ground-state wave function in
each of the tightly confined directions, n;p is the number of
atoms per unit length in each lead (near the center of the
trap), and f is a dimensionless parameter that measures the
extent of wave-function overlap between the leads and the
dot. In order to realize the topology described in the previous
section for N> 3, one must prevent nearest-neighbor tunnel-
ing between the leads; this limits f to be at most 1/N, where
N is the number of leads. (As the Kondo temperature de-
creases with f, this bound limits the number of channels that
it is feasible to realize using the approach described here.)
The other important parameters are the coupling constant V
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and the speed of sound. The former is given by the expres-
sion V=h{(), where () is the effective Rabi frequency of the
Raman transition coupling the hyperfine states @ and b. The
speed of sound is given by the expression

harn,p

US_ m K ’ (4)
where K is the Luttinger parameter. There is no general,
closed-form expression for the Luttinger parameter in terms
of the microscopic variables; however, as discussed in Sec. I
and in Refs. 11 and 12, essentially the entire range of K
values is experimentally accessible. As we shall show in
what follows, the Kondo temperature depends on the micro-
scopic parameters according to the general form

ksT fwsex ( ﬁvf) (5)
Blk £ p eu)
where & is the healing length of the Bose gas (which is typi-
cally on the order of interparticle spacing). For *’Rb atoms in
a trap with transverse dimensions about 40 nm (see, e.g.,
Ref. 18), and for K=1 (i.e., the Tonks-Girardeau limit), one
can reasonably attain U~20 nK, #v,/£~70 nK, and hence
Tx=5-10 nK; such temperatures are routinely achieved in
ultracold atomic settings. It should be possible to increase Tk
further by tuning a,, through a Feshbach resonance, or, al-
ternatively, by using Na instead of Rb.

IV. ANALYSIS OF THE MODEL

In this section, we develop the phase diagram for the
iRLM with TLL leads using perturbative renormalization-
group (RG) techniques. In addition to processes that involve
the dot, we account for those in which bosons hop directly
between leads. It is useful to write the Hamiltonian for the
uncoupled leads as

N L 1
Hleads = E Cs f dx|:K((9x0n)2 + %(&x(ﬁn)z 5 (6)
0

n=1 2w

where the density fluctuation modes of the TLLs are given
by the operators p,(x) ~ d,.¢,(x)/ 7 and the canonically con-
jugate momenta are given by d,6;(x). Direct hopping pro-
cesses between the leads can be described using the boson
annihilation/creation operators i,(x) ~e%™| _; at the end
points of the semi-infinite TLLs,

Hypn =12, {000 Ol g}, (7)

An RG analysis of this interlead hopping term about a sys-
tem of N decoupled wires gives the RG flow equation for the
hopping amplitude 7 as

dt 1
—={1-=]t. 8
dl ( K ) ®)
Therefore, the fixed point characterizing a system of N de-

coupled wires (which we shall refer to as the disconnected
fixed point, DFP, t=0) is stable for K<<1. At low frequen-
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cies, the ground state of the complete system consists of
either N uncorrelated wires (i.e., the DFP), or N maximally
correlated wires [which we shall refer to as the connected
fixed point (CFP), at which r— o]. The CFP manifests itself
via the mutual pinning of the phase fields at the junction,

0n(x’t) = an’(x’t)|x=0 (9)

for all pairs (n,n").0 Additionally, current conservation at
the junction demands that

N
> 3,6,(0,1) =0. (10)
n=1

In the language of the RG, the hopping ¢ flows to 0 (i.e., to
the DFP) for K<1,%° and to strong coupling (i.e., to the
CFP) for K>1.%20 An RG analysis around the CFP reveals
that the leading perturbation is given by the backscattering
process on, say, the jth lead close to the junction (x=0) hav-
ing amplitude \,'%20

S,mk:—)\f drcos[¢;(x;=0,7)] (11)

in Euclidean space time. It is worth emphasizing that the
form of this perturbation arises from the well-known duality
of the canonically conjugate 6 and ¢ fields'® that character-
ize the theory of the one-dimensional TLL leads. In the
present context, which involves the dynamics of a (zero-
dimensional) junction of TLLs, this duality manifests itself
in its boundary version,”® which is analogous to, e.g., the
duality of number and phase variables on a superconducting
island."> The boundary effective action has an Ohmic dissi-
pation term?' whose friction coefficient is given by
N/2K(N—-1): the N lead problem is equivalent to that of
quantum Brownian motion in (N—1) dimensions.”> The RG
equation for the amplitude \ is

dN [ 2(N—1)K}
gy e AN
dl N

Therefore, the CFP is stable for K>N/[2(N-1)]. Both the
DFP and the CFP are stable for N/[2(N-1)]<K<1; for K
in this interval there must, therefore, be a quantum phase
transition at some nonzero value of the hopping amplitude ¢*
separating the ground states of N uncorrelated and N maxi-
mally correlated wires. This transition is thus analogous to
the localization-delocalization transition exhibited by a quan-
tum Brownian particle on an (N—-1)-dimensional triangular
lattice in the presence of Ohmic dissipation.?? Furthermore,
computing the RG equation for the backscattering coupling A
to second order in an € expansion’*?? for e=K-N/2(N
—1) yields an unstable fixed point at N*=€/2. An analogous
calculation for the hopping coupling ¢ and €=1-K yields
another unstable fixed point at r*=€/2. In this way, the du-
ality of the problem leads to a self-dual theory at K
=VN/2(N—-1). These RG results for z, N\ give rise to the RG
phase diagram sketched in Fig. 3(a). Although the values of
K at which the transition occurs are known analytically for
weak and strong coupling, as discussed above, the precise
shape of the curve in the K- plane is not known analytically.

(12)
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FIG. 3. (a) Phase diagram for N leads with interlead hopping 7
and TLL parameter K. The phase boundary (thick line) separates the
disconnected (i.e., DFP, =0, K< 1) and maximally connected [i.e.,
CFP, t—o, K>N/2(N-1)] fixed points and has a self-dual point
M at K=\VN/2(N-1). (b) Kosterlitz-Thouless flow for lead-dot
couplings at fixed (K,7). The left separatrix (thick line) demarcates
the boundary between the ferromagnetic and Kondo phases.

Note that this curve of unstable fixed points at intermediate
coupling turns into the marginal line at K=1 found previ-
ously for the case of two wires meeting at a junction.?’

The novel feature of the N-wire phase diagram shown in
Fig. 3(a) is that the CFP is stable against weak backscattering
processes that take place close to the junction, even for K
< 1; this is to be contrasted with the two-wire case?® where
the CFP is unstable for all K<<1. The enhanced stability of
the CFP in the N> 2-wire case can be understood as follows.
The boundary conditions on the fields at the junction imply
that a wave packet arriving at the junction from any one wire
meets an effective composite TLL, comprising the N—1
other leads, for which K y=(N—1)K>1. This can also be
seen from the solutions of the equations of motion at the
junction of the CFP, as dictated by the Griffiths current-
splitting form of the boundary conditions given above.!® The
locking of the phase field in the first wire to that of the
composite TLL precludes any chemical-potential drop across
the junction, although only a fraction of the incoming current
enters any individual lead of the composite TLL. Said an-
other way, the local inertia of the phase fields strongly sup-
presses backscattering events involving high-momentum
phase fluctuations. This phenomenon is dual to the enhanced
inertia in the number fields at the end points of the wires at
the DFP arising for K<<1, which results in a power-law sup-
pression of the tunneling density of states (TDOS).

We now incorporate the dot by coupling it to the N leads
via Hf, [see Eq. (1)] and develop the phase diagram via an
RG analysis around the CFP and DFP. Near the CFP, we find
the following scaling equations:

di, , dJ, 2N- 1)K
=P, —Eo|l1-=—47|7,, 13
dl Y dl N [ (13)

to second order in all couplings, where the couplings have
been scaled by the high-frequency cutoff w.=v,/ ¢ (in which
& is the healing length'#). In addition, we find that the RG
equation for the backscattering coupling acquires a contribu-
tion from the dot-mediated hopping so that

d\ { 2(N—1)K}
o2/
di N

By shifting J, to J.=J,+1-2K(N-1)/N, Eq. (13) assumes
the well-known Kosterlitz-Thouless form?? [see Fig. 3(b)],

J2
+ L. (14)

c
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FIG. 4. (Color online) Phase diagram of the dot-lead system.
The discontinuous critical surface separates the Kondo and ferro-
magnetic phases. The curved vertical ribbon (yellow/orange) is the
phase boundary between the DFP and CFP phases [see Fig. 3(a)].
The discontinuity of the critical surface shrinks to zero at the mul-
ticritical point M. The diagram has four phases—I: completely de-
coupled wires; II: wires coupled only through dot; III: wires con-
nected both directly and through dot; and IV: wires connected but
decoupled from dot. The transitions between them (shown in insets
A, B, and C) are described in the text.

with a Kondo temperature scale given by Ty~ w.e™ " ;. From
the discussion in Sec. III C, choosing reasonable values for
w.~70 nK, J!=0.38-0.5 gives a Kondo temperature of
Tx=~5-10 nK. Thus, J, is found to be RG marginal at first
order but RG relevant at second order and independent of K
and N. On the other hand, J, has the same scaling dimension
as N, and is thus dependent on K and N. For K>[N/2(N
—1)], even though J, is RG irrelevant (from its scaling di-
mension), it can turn relevant, due to the growth of J.. The

scaling equation for J, admits a nontrivial fixed point at .72
=[2(N-1)K/N]-1. For Jz>jz, all flows lead to the

N-channel Kondo fixed point; for ]z<7z, flows lead to zero
dot-to-lead hopping.

If K<[N/2(N-1)], the RG analysis about the CFP is in-
valid; one must instead analyze the Kondo couplings around
the DFP. The scaling relations near the DFP are

ar, 1
a =T T T\ )

2

de_p (15)

As with \, the flow for 7 acquires a positive contribution of
order Ji/ w, from the dot-mediated hopping so that

dt ( 1 ) 7

—=|1l-=)t+—,

dl K ®,
i.e., the dot promotes interlead hopping, as one might expect
on physical grounds. By shifting J, to J.=J +1-(1/K), Eq.

(16)
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FIG. 5. RG flows in the 7-J, plane. Here, J, <|J.~J:|,|J.~J.
(D JZ<JZ*,7Z: hopping via the dot is irrelevant and the dot stays
disconnected. (II) .7Z<JZ<J§, N/2(N-1)<K<\N/2(N-1): for
J | —0, hopping via the dot is irrelevant for r<<t* and relevant
otherwise. However, sufficiently large J, can drive ¢ toward the
regime in which both 7 and J, grow at low energies. (III) J,>J.:

s

hopping via the dot is relevant on both sides. (IV) 7Z<JZ<];‘ ,
VN/2(N-1)<K<1. Similar to II, except that J, competes with ¢
to the left of the separatrix.

(15) assumes the Kosterlitz-Thouless form. Similarly, for K
<1 the scaling equation for J, has a nontrivial fixed point at
J.=(1-K)/K. For J,>J, all flows lead to the N-channel
Kondo fixed point; for JZ<J:, flows lead to zero dot-to-lead
hopping.

Bringing together the flows of (¢,J,J,) yields the three-
dimensional phase diagram shown in Fig. 4. The tuning of ¢
and/or K allows one to access two nontrivial transitions be-
tween phases that have opposing characters in both their
Kondo coupling to the dot and their direct interlead hopping.
One is a transition between phase II (in which N-channel
Kondo physics dominates TDOS suppression) and phase IV
(in which Kondo physics is suppressed by local phase pin-
ning); see Fig. 4(B). The other is a transition between phase
I (in which Kondo physics is dominated by TDOS suppres-
sion) and phase IIT (in which Kondo screening overcomes
local phase pinning); see Fig. 4(C). In addition, we find a
multicritical point [see point M in Fig. 4(A)] at intermediate

coupling in f; this occurs when .7Z=Jj [so that K
={N/2(N-1)]. Point M coincides with the self-dual point*?
in the phase boundary of intermediate-coupling fixed points
[see Fig. 3(a)] and involves a compromise between the com-
peting tendencies of TDOS suppression and local phase pin-
ning. For the special case of N=2, the phase boundary in Fig.
4(A) becomes a marginal line at K=1 (i.e., the Tonks-
Girardeau gas'?), and the point M becomes a multicritical

line at jZ=J:=O. We stress that in Fig. 4, all phase bound-
aries, other than the one separating the CFP and DFP, are
known quantitatively. Note that this discussion is strictly
valid only for small bare (i.e., microscopic) values of the
lead-dot hopping amplitude J , . For larger bare values of J |,
one must also take into account the effects of J, on the
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quantum dot probe beam
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I 1
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@, @,

FIG. 6. (Color online) (a) Experimental setup for detecting the
Kondo effect using an optical cavity. (b) Transmission through the
cavity in the Kondo (left) and unscreened/ferromagnetic (right)
cases. In the former case, the atomic population on the dot fluctu-
ates coherently between 0 and 1; in the latter, the atomic population
is essentially frozen at O or 1. The cavity’s resonance frequency
depends on the on-dot atomic population and can therefore be used
to read out this population.

couplings 7 and \ [see Eqs.(14) and (16)]. The effects give
rise to a curved phase boundary in the #-J, RG phase dia-
grams shown in Fig. 5.

The four phases are characterized by the following bare
two-lead transmission coefficients across the junction: G,
=0 (i.e., minimal) at the DFP and G,=4K/N? (i.e., maximal)
at the CFP. These bare coefficients acquire power-law cor-
rections of order 27" (DFP) and N>T* (CFP), arising from
direct interlead scattering;? here, T represents an energy
scale (e.g., temperature) that cuts off the RG flows, and
(v,u) are exponents determined by the leading irrelevant
perturbations around the corresponding fixed points. In ex-
periments with ultracold atoms, these power-law contribu-
tions should be detectable via real-time dynamics of the
leads."?

V. DETECTING THE KONDO EFFECT

We now briefly address the question of how the Kondo
effect may be detected in an ultracold atomic setting. Num-
ber fluctuations on the dot can be accessed via some nonde-
structive measurement scheme such as, e.g., that suggested
in Ref. 24 for the Bose-Hubbard model: in such a scheme the
dot would be located in the waist of a high-finesse optical
cavity that has a resonance frequency near an optical transi-
tion of the hyperfine state b (but not of a). This is shown in
Fig. 6(a). A fixed-number state on the dot (i.e., the un-
screened spin) would merely shift the cavity’s resonance; by
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contrast, a fluctuating-number state (i.e., the Kondo state)
would lead to a double-peaked structure in the transmission
spectrum of the cavity, having peaks corresponding to an
empty dot and to an occupied dot [as shown in Fig. 6(b)].

VI. CONCLUSIONS

To conclude, we have delineated a scheme for realizing
and observing the N-channel Kondo effect using tunable
ultracold-atomic leads and proposed an additional scheme
involving superconducting nanowires. The ultracold-atom-
based realization involves N one-dimensional leads of
bosonic atoms coupled to an atomic quantum dot. The com-
posite lead-dot system realizes an iRLM, which is equivalent
to the N-channel Kondo model. Using a perturbative RG
analysis, we have established the phase diagram for this
N-channel Kondo model with strongly interacting bosonic
leads. The phase diagram exhibits four phases, separated by
novel phase transitions arising from the interplay between
the Kondo effect and the strong correlations in the leads, as
well as a discontinuous phase boundary separating the
Kondo and ferromagnetic phases. This phase boundary is
related to the curve of unstable intermediate-coupling fixed
points in the problem of N-tunnel-coupled bosonic TLL
leads; the leads-only problem contains a self-dual fixed
point, which becomes a multicritical point in the presence of
the Kondo couplings (see Fig. 4). We have also sketched a
method for the detection of the Kondo correlations at the
atomic quantum dot.

We now end with some comments. First, we have seen
that the problems of N=2 bosonic or fermionic TLL leads
meeting at a junction have identical RG phase diagrams.!®-?
It is interesting to note that this result can be employed in
applying our RG phase diagrams for the problem of N
bosonic TLL leads to the case of a generalized Bose-Fermi-
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Kondo model® involving a spin-1/2 impurity Kondo-

coupled to two fermionic TLL (Fermi) leads [K,<1(=1)]
and M=N-2 Ohmic bosonic TLL leads (or, more generally,
bosonic baths).20

Finally, we address the effects of weak asymmetries in the
direct interlead tunneling and lead-dot hopping amplitudes.
Asymmetries in the tunneling amplitudes involving, say,
M(<N) wires would result in a CFP configuration for N
—M wires; similarly, asymmetric lead-dot hopping ampli-
tudes would result in an (N—M)-channel Kondo effect. It
appears plausible that the careful design of the phase mask
(which generates the optical potential wells and barriers that
trap the atoms, as shown in Fig. 1) can help in ensuring that
the bare values of the direct interlead hopping between (N
—-M)>1 wires be made sufficiently symmetric: a
(N—M)-channel Kondo fixed point will still be achieved in
this case. Moreover, for the case of asymmetries which are
small compared to the Kondo temperature, we expect that
the onset of the multichannel Kondo effect should occur at
significantly higher temperatures than those at which the
asymmetries manifest themselves. Upon cooling the system
down to arbitrarily low temperatures, however, the system
would undergo a gradual crossover through a hierarchy of
M < N-channel Kondo effects, and finally toward the single-
channel effect. These crossover effects should, in principle,
be detectable experimentally.'”
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